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Abstract
Feature importance and dimensionality reduction
are important for effectively visualizing and in-
terpreting real-world datasets, as well as improv-
ing prediction accuracy. Using the Students Aca-
demic Performance Dataset1,2 from Kaggle, we
implemented support vector machines, Bayesian
Networks, and logistic regression with L1 and
L2 norms. These algorithms with various hyper-
parameters were implemented to determine fea-
ture importance and predictive power of the mod-
els. These results were then compared to the im-
portant features determined from the preprocess-
ing techniques: Principle Component Analysis
(PCA) and Linear Discriminant Analysis (LDA).
UsingR2 values, which explain the percentage of
the response variable explained by the variation
in the model, it was found that L1 regularized lo-
gistic regression and Bayesian networks best fit
the data. The higherR2 values identify that these
algorithms had the most predictive power, allow-
ing them to identify the most important features
in the dataset. SVM, LDA, and L2 regularized lo-
gistic regression least accurately fit the data with
SVM being the next highest R2 value and L1 be-
ing the lowest. The important features between
Bayesian networks, PCA, and LDA were com-
pared, while the irrelevant features determined
by SVM and L1/L2 logistic regression were also
evaluated.

1. Introduction
For any given dataset, data scientists aim to build the
simplest model with the most predictive power. This
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predictive power depends on the influence of each feature
in the dataset on a given label. However, most datasets
pulled from real-world activities are often too complex
and contain too much noise to easily determine a feature‘s
significance in the model, or they are filled with irrelevant
features. For example, in a dataset with 300 features,
maybe only 50 of them actually affect the label outcome,
which would make for a much simpler model to visualize
and interpret than a model with 300 features. Similarly,
many datasets suffer from the notion of the curse of
dimensionality (COD), which is a phenomenon that occurs
when data becomes sparse in a high dimensional space
because as more dimensions are added, the amount of data
needed to define the feature space increases exponentially.
As such, it is important to perform feature selection and/or
dimensionality reduction as a preprocessing or implicit
algorithmic technique on complex datasets to obtain
meaningful predictive information.

Feature selection generally consists of identifying the
features that are most important in predicting an example
label through some statistical method like Akaike Infor-
mation Criterion (AIC), Bayesian Information Criterion
(BIC), or the model‘s R2 value. It can also improve the
accuracy of the resulting model by removing redundant, ir-
relevant, or noisy data.3 Dimensionality reduction involves
the mapping of a dataset into a lower dimensional feature
space. The variance in the data is mostly represented
through the reduction of the data to only the most relevant
features or discriminative components.3 There is much
overlap between the two methods, as both encourage a
simpler model that is in a lower dimension. Similarly,
some algorithms do feature selection and dimensionality
reduction at the same time.

Using a Students Academic Performance Dataset1,2

from Kaggle, we explore how machine learning algorithms
such as support vector machines, Bayesian networks,
L1 logistic regression, and L2 logistic regression, han-
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dle feature importance and dimensionality reduction to
determine the predictive power of features in a dataset.
Additionally, we use preprocessing techniques such as
Principle Component Analysis (PCA) and Linear Dis-
criminant Analysis (LDA) to extract feature importance.
We are interested in how the preprocessing and modeling
approaches compare to each other in terms of the top four
important features chosen from each process. Specifically,
we compare which features were chosen and the R2 values
among the algorithms to determine fit of the model to the
data and predictive power. Moreover, the relative weights,
coefficients, and/or r-values among predicted important
features from each method are also compared across the
models.

Based on theR2 values from each model, we found that L2
regularized logistic regression and Bayesian networks were
the best fit for the data; i.e. as models, they had the most
predictive power and could identify the most important fea-
tures in the dataset. SVM was performed for each 1-vs-all
label and was the second best fit model. LDA and L1 lo-
gistic regression were the least accurately fitted to the data,
and had the least predictive power to allow them to perform
feature selection. Moreover, we compared the important
features from the Bayesian network, LDA, and PCA and
found similarities among the features chosen. For SVM,
L1 logistic regression, and L2 logistic regression, we found
that some of the same features were deemed as irrelevant
and not important to the predictive power of the model.

2. Related Work
Hira et al. explored various models that could perform
dimensionality reduction on a gene microarray dataset,
resulting in accurate classification of new examples in the
future. Moreover, they evaluated and compared the most
efficient feature selection techniques for simplifying the
gene microarray dataset.4

Hira et al. splits feature selection into three cate-
gories: filtering, wrapping, and embedding techniques.
Filtering is a type of feature extraction that does not
involve learning. Univariate (features are evaluated
separately) and multivariate (dependencies between
features are considered) techniques are described. Most
notably, information gain ranking (univariate), describes
the conditional dependency between the feature and the
label and determines feature importance from those rank-
ings. Correlation techniques such as Correlation-based
Feature Selection (CFS) classify good features as ones
that are highly correlated with the class labels but not
one another.4 We explore the information gain and CFS
filters when implementing Bayesian networks in this paper.

For deterministic wrappers, a mix of PCA and SVM
approaches were used in a sequential forward selection
(SFS), where each feature is evaluated and is only added
until the evaluation of the feature does not constitute
improvement (i.e. until it converges). The feature with
the highest score is permanently selected. This process is
repeated until the all of the most important features are
selected.4

The embedded algorithms discussed include those
that have LDA as a preprocessing step followed by
recursive SVMs. The most important features are chosen
through a hard SVM method, where features are thrown
out based on their weight. This notion is further supported
using cross-validation.4 In addition, many classifiers do
internal feature selection including logistic regression with
regularization. We use aspects of deterministic wrappers
and embedded algorithms in our analysis of feature
importance and will identify if these algorithms are more
or less efficient than the logistic regression regularization
algorithms chosen for this project.

Haury et al. evaluates the accuracy of feature selec-
tion techniques on breast cancer prognosis datasets. The
models they analyze include wrapper methods such as
SVM and embedded methods such as Lasso regression
(L1 regularized logistic regression) and the elastic net,
which is a combination of the L1 and L2 norms of
logistic regression. They performed all of these models
using an ensemble method in order to obtain the best
accuracy per model possible. Accuracy of each model
was determined by the area under the ROC curve. The
experiment concluded that elastic net and Lasso regression
were the most accurate. SVM in comparison to the other
models was the most computationally expensive and did
not provide the best accuracy.5 While we did not directly
compare the accuracy of feature selection techniques,
we analyzed feature selection in our experiments of L2
regularized logistic regression and linear SVM based on fit
of the models to the data (R2 values) and comparison of
important features selected.

3. Methods
3.1. L2 Regularized Logistic Regression

In this project, we will look at two regression analysis
methods that regularize the logistic regression model:
logistic regression with an L1 norm and logistic regression
with an L2 norm.

Logistic regression is a classifier that models the probabil-
ity of distribution of labels in a dataset given their feature
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values by assigning feature vectors regression weights.6

The L2 regularizer for logistic regression (similar to Ridge
regression) penalizes terms that could overfit the model by
summing the squares of the regression coefficients (Eq.
1).7

(1) w∗ = argmin
w

∑
j

(t(xj)−
∑
i

wihi(xj))
2+λ

k∑
i=1

w2
i

It is also known as the Least Squares Error (LSE) function
because as it minimizes the sum of the squared errors of
the weights, it also decreases variance within the dataset
(Fig. 1). By doing so, the L2 regularizer also alleviates
multicollinearity, the phenomenon in which one predictor
variable in a regression model can be linearly predicted
from the others with a substantial degree of accuracy.7

By reducing multicollinearity, the L1 regularized model
allows for more accurate analysis on individual features
and their importance in the model. While the L1 norm
sums sparse coefficients (i.e. some coefficients become
zero), which is ideal for feature selection, the L2 norm
does not do this. Instead, the L2 norm still affects the
weights, but the coefficients are simply large or small, not
zero. As such, feature selection can still be performed by
looking at the larger coefficient values.7

Figure 1.1 The red ellipses represent the residual sum of
squares, with the minimization of the data occurring at the
ordinal least squares (OLS) estimate (the smallest ellipse).
The blue circle represents the L2 penalty (also known as
Ridge). The minimal circle and ellipse size, or where
the circle and ellipse meet is the L2 logistic regression
estimate. As such, L2 regularized logistic regression
minimizes variance in the model.7

1Taken from https://onlinecourses.science.
psu.edu/stat857/node/155

3.2. L1 Regularized Logistic Regression

The L1 regularizer for logistic regression (which is very
similar to Lasso regression) converges to the global max-
imum for a Lagrangian constraint optimization problem.8

Logistic regression is a model of the probability distribu-
tion of the label given the feature vector. For L1, there is a
penalty (i.e. the LaPlacian prior) applied to the MAP esti-
mation of θ to prevent overfitting (Eq. 2).9

(2) w∗ = argmin
w

∑
j

(t(xj)−
∑
i

wihi(xj))
2+λ

k∑
i=1

|wi|

L1 norm performs both feature selection and regularization
to increase predictive accuracy and interpretability of
a model.8 The model achieves this by ”minimizing the
residual sum of squares with the constraint that the sum
of the absolute value of the coefficients is less than a
constant” (Fig. 2).8 This leads to coefficients that are
exactly 0, and thus has the same effect as being taken out
of the model. Moreover, as the complexity parameter, C,
decreases, more features are reduced to zero as more of a
penalty is applied.9

Figure 2.2 Much like L2 logistic regression, the red
ellipses represent the residual sum of squares of the data,

2Taken from https://onlinecourses.science.
psu.edu/stat857/node/158

https://onlinecourses.science.psu.edu/stat857/node/155
https://onlinecourses.science.psu.edu/stat857/node/155
https://onlinecourses.science.psu.edu/stat857/node/158
https://onlinecourses.science.psu.edu/stat857/node/158


Final Report

with the smallest ellipse being the OLS estimate. The
blue square represents the L1 penalization, where θ values
may or may not be zero depending on the importance of
the feature. As such, L1 logistic regression effectively
removes unnecessary features. The value at which the
minimal square size and the smallest ellipse meet is the L1
estimate.9

3.3. Linear Support Vector Machines

Another model we use in our analysis is linear support
vector machines (SVM), which is an optimal hyperplane
classifier. The hyperplane represents the maximum margin
between two classes of functions, which is created through
a constrained quadratic optimization problem.10 Any
training examples that lie on the margin, otherwise known
as support vectors, affect the model‘s classification ability
(Fig. 3). The solution to the optimization problem for
each example is the coefficient or weight of the training
vector and also corresponds to the feature importance of
each vector. If a coefficient is high relative to other feature
coefficients, the feature is ranked as more important.11

Figure 3. The maximum margin is placed such that it is
the farthest from all feature vectors. Those feature vectors
that lie on the margin are known as support vectors and are
the only features that affect the classification of the two
groups on either side of the hyperplane. According to the
SVM model, the vectors with the highest coefficients are
the more important features in the dataset.3

3Taken from https://docs.opencv.org/2.

3.4. Bayesian Network

The last model we identified as a feasible feature selection
method for this project was a Bayesian Network. A
Bayesian Network involves the use of a Directed Acyclic
Graph (DAG) with nodes that contain features with con-
ditional probabilities and directed edges between features
(Fig. 4). The makeup of this model is important in that
it illustrates the conditional dependencies of features and
allows more in-depth questions to be asked about a dataset,
rather than simply questions about predictive power.
Important features can be extracted from this model in a
number of ways. Some methods that we evaluate are gain
ratio and information gain rankings of features, as well as
correlation between features and labels to extract the most
significant features in the dataset.12

Figure 4.4 The above DAG is a simple representation of a
Bayesian Network. Given the directed nature of the graph,
features may be conditionally dependent on the observa-
tion of preceding features. For example, the leftmost label
is dependent on two features. Additionally, the graph must
be acyclic in order for the idea of feature conditional de-
pendencies to hold true. A feature is considered important
given the value of the edges (by correlation, information
gain, gain ratio etc.) between other features and/or labels.12

4/doc/tutorials/ml/introduction_to_svm/
introduction_to_svm.html

4Taken from http://www.cse.unsw.edu.au/
˜cs9417ml/Bayes/Pages/Bayesian_Networks_
Inference.html
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3.5. PCA and LDA

We will be comparing the above four algorithms to pre-
processing techniques that have built-in feature selection
properties: PCA and LDA. PCA is a linear transformation
method that projects a high dimensionality feature set onto
a lower dimension space without looking at feature labels
(Fig. 5). This is done by calculating eigenvectors that
represent linear combinations of the feature space and can
be represented by their eigenvalues (i.e. a coefficient of
the unit-scaled eigenvector). These eigenvector/value pairs
represent the principal components of the new feature
space. A simpler/lower dimension feature space is created
by taking the highest values eigenvectors, which allows
the less important features to be phased out. Feature
importance can be obtained by looking at the linear
combinations in the first few eigenvectors with the highest
eigenvalues. Since the eigenvectors are unit-vectors by
nature, the vector can be multiplied by a loading (scaling)
factor to obtain the most prominent features in each
eigenvector.13,14

Figure 5.5 Since PCA does not take labels into account,
the highest eigenvalues represent the best projected axes
(λ1 and λ2) of the feature set from high to low dimension.
In other words, λ1 and λ2 represent the component axes
that best maximize the variance of the lower dimension
feature set.13,14

LDA also involves linear transformation of high dimen-
sionality features onto a lower dimensional space, but it

5Taken from http://sebastianraschka.com/
Articles/2014_python_lda.html

takes the labels of the features in account. In particular,
it maps out the new subspace to be able to distinguish
between different class labels (Fig. 6). While the new
feature space will look different, LDA still involves taking
the linear combination of features and taking the higher
eigenvector/value pairs to project onto the new space.
As such, feature importance can also be determined by
extracting the most prominent features in each linear
combination through the loading or scaling multiplier.13,14

Figure 6.6 LDA performs feature label analysis when
executing dimensionality reduction. The dotted line
between the blue and green ovals represents the maximum
component axis calculated with the LDA model. This
axis maximizes the separation between two different class
labels as it projects the feature set into a lower dimensional
space.13,14

The above algorithms and methods provide different ap-
proaches to feature selection and dimensionality reduction.
Some perform selection implicitly while others have the
ability to have feature selection extracted from already cal-
culated values (i.e. PCA and LDA). We have performed
each of these methods on the Students Academic Perfor-
mance Dataset and compared the results of what features
were deemed important with each algorithm and the spe-
cific hyperparameters used.

6Taken from http://sebastianraschka.com/
Articles/2014_python_lda.html
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4. Experimental Results
4.1. Experimental Methods

The Students Academic Performance Dataset was taken
from Kaggle and consists of 16 features, 480 instances, and
three class label values. Since the labels were multinomial
with categories of low level student, medium level student,
and high level student, the labels were turn into three
1-vs-all columns. This allowed us to run SVM on each
class label and obtain the top features for each. The L1
and L2 regularizer of logistic regression and linear SVM
were implemented using the SciKit Learn API. The C
(complexity) values were tuned. Smaller C values specify
stronger regularization/penalty. Additionally, the training
algorithm is different for both L1 and L2 penalties, and as
such, was tuned for both norms as well. For the L1 penalty,
the SAGA solver (A Fast Incremental Gradient Method
With Support for Non-Strongly Convex Composite Ob-
jectives) was chosen; for the L2 penalty, the Newton-CG
Augmented Lagrangian Method solver was chosen. Weka
allowed us to construct a Bayesian network that could
be based on information gain, gain ratio, or correlation
to learn the edges of the graph. The number of principal
components in the PCA model was tuned to be 4 (Fig. 7).

Figure 7. Only the first four principal components from
PCA have a significant variance and explain a significant
amount of variance in the dataset. Thus, the number of
components in the PCA model was tuned to be 4.

For LDA, the number of components is 1 less than
the number of class labels in the dataset. Thus, the
number of components in the LDA model is 2 (Fig. 8).

Figure 8. The first LDA feature explains almost all of the
variance in the model.

4.1.1. HYPOTHESIS: COMPARISON OF ALGORITHMS

We hypothesize that L1 regularized logistic regression will
exhibit the best model fit for the data and will have the
most predictive power (i.e. be able to identify important
features) as it can make irrelevant feature weights zero and
essentially toss them out of the model. Additionally, since,
Bayesian networks are generative and describe the feature
space, as well as take into account feature dependencies,
we would expect it to also fit the data more accurately
and to determine important features through its predictive
power. We believe PCA and LDA will be the least accu-
rate, since the classification is multinomial. Since LDA
takes feature labels into account, it is suspected that LDA
will be better than PCA at selecting important features that
influence correct label prediction. While we cannot infer
which model will be better, we can generalize that SVM
and L2 logistic regression will fall somewhere in between
the models described above. It is assumed L2 will be worse
than L1 because L2 does not implicitly perform feature se-
lection. Since SVM is a discriminative model, we suspect
that it will not be able to fit the data as well and will be
least accurate at predicting important features because it
does not describe the feature space.

4.1.2. EVALUATION TECHNIQUES

The models will be evaluated on accuracy of predicting im-
portant features by comparing their R2 values and the fea-
tures that they predict. Moreover, the r-values, coefficients,
weights, or Eigenvalues/Eigenvectors of the features de-
pending on the model, will be compared within each model
to determine the extent in which a certain feature was pre-
dicted as important. Through these qualitative and quanti-
tative methods, we will evaluate the model fit and predic-
tive power of each model and its ability as a feature selec-
tion algorithm.
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4.2. Results

A Bayesian network was run three times with information
gain, gain ratio, and correlation criteria. The top 5 features
for each are shown in the following schematics (Table. 1).
The numbers next to each feature pertain to the r-value (or
the ranking) of the feature in predicting a given label. The
overall r2 value of the model is .8164, meaning that 81.64%
of the variation in Class can be explained by variation in the
model.

Information Gain Ranking Filter
r-value Feature
0.45801 VisitedResources
0.39745 StudentAbsenceDays
0.37337 RaisedHands
0.2578 AnnouncementsView
0.1504 ParentAnsweringSurvey

Gain Ratio Feature Evaluator
r-value Feature
0.40986 StudentAbsenceDays
0.25378 RaisedHands
0.19878 VisitedResources
0.17636 AnnouncementsView
0.15212 ParentAnsweringSurvey

Correlation Ranking Filter
r-value Feature
0.3829 VisitedResources
0.3608 StudentAbsenceDays
0.3283 RaisedHands
0.2895 AnnouncementsView
0.2369 ParentAnsweringSurvey

Table 1. Information gain, gain ratio, and correlation-
based classification of the important features in the Kaggle
dataset. The top five features for all three methods were the
same, with only the top three differing in order between
the information gain and correlation models and the gain
ratio model. Information gain has the highest r-values for
the first three terms, suggesting that it is strongest indicator
of feature importance for this dataset.

In both the correlation and information gain criteria, the
VisitedResources label was ranked as the most important
feature. Moreover, the information gain run had the
highest r-values in the top three features, while the other
two parameters spread out the r-values amongst the top
five features. Information gain highly correlates the top
three features, VisitedResources, StudentAbsenceDays,
and RaisedHands, to the values of the labels. Gain Ratio
also ranks the top three features as most important (the
same three as information gain but in a different order).
The correlation ranking behaves differently, however, and

ranks the first five features quite evenly in correlating to
the feature labels. While these different parameterizations
were not run with test set data, based on the r-values of
the features, it seems that the information gain parameter
makes for the simplest model as the first three features
are the most heavily weighted. It is also important to
note that the Bayesian network was run only once with
all multinomial features included. In other words, the top
features for the dataset as a whole were predicted, which is
different than SVM and L1/L2 logistic regression where
we analyze the top features for each class label (1-vs-all)
of high, medium, or low.

SVM was run three times with each multinomial class
label (i.e. the three labels were separated into 1-vs-all
columns). Since SVM feature importance is based on the
feature vector weights that form the positive and negative
classifications on either side of the hyperplane, the larger
bars on the following graphs represent the most important
feature for each label (low, medium, and high) (Fig. 7).
The R2 value of the model for the high level student label
is .7375, meaning that about 74% of the variation in the
linear SVM model with the ”high” label is explained by
the variation in the model. The medium level labeled SVM
has an R2 value of .8229 and the low level labeled SVM
has an R2 value of .5583. These values suggest that the
SVM model best fit the data when the class was defined as
medium since it has the highest R2 value.

Low

Medium

High
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Figure 9. Bar graphs of important features for each
label (low, medium, and high level students) from SVM.
The highest weighted blue features represent the most
important features for a positive label value, while the
largest red features are the most important features that
suggest a label that is anything but the positive label value.

The graph for the SVM run for the low level student indi-
cates that StageID, Gender, and Semester highly correlate
with a positive label for a student being low level. Stu-
dentAbsenceDays, ParentAnsweringSurvey, and Placeof-
Birth are features that correspond with negatively classify-
ing a low level student; i.e. they are the features that pertain
to a student not being low level. The features chosen for the
medium level are much different, as StudentAbsenceDays,
ParentAnsweringSurvey, and SectionID highly pertain to
positively classifying the example as medium. It was found
that Relation, StageID, and Gender correlated with clas-
sifying a student as something other than a medium level
student. Lastly, a high level student can be determined
by the StudentAbsenceDays, Relation, and ParentAnswer-
ingSurvey features, while other labels besides high can be
identified with the StageID, GradeID, and Gender features.
This makes sense, because for example, if the high label
is negatively classified with Gender and StageID (meaning
the student is instead medium or low), the most predictive
features for low are StageID and Gender, so the student is
likely a low level student. Similarly, the medium level is
not predicted with features of Stage ID and Gender, which
further confirms that the student is probably low level and
that the feature classifications are interconnected across the
different labels.

The L1 Regularized Logistic Regression Model was run for
each multinomial class label. Since L1 regularization with
a SAGA solver ”minimizes the residual sum of squares
with the constraint that the sum of the absolute value of
the coefficients being less than a constant”, the nonzero
weight vectors that the model calculates are the important
features in the model.8 The R2 value of the L1 regular-
ized model was 0.61, meaning that 61% of the variation
in Class can be explained by the variation in the model.
Although the most important features cannot be extracted

from the model, we know which features were essentially
removed from the model. From figure 10, we can see that
for the label ”low”, the features AnnouncementsView, Dis-
cussion, and Relation had coefficients of virtually 0; for the
label ”medium”, Discussion, Semester, ParentAnswering-
Survey, ParentschoolSatisfaction, raisedhands, SectionID,
GradeID, and AnnouncementsView all had coefficients of
virtually 0; and for the label ”high”, AnnouncementsView,
Discussion, and VisITedResources had coefficients of vir-
tually 0.
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Figure 10. The features in the middle of the bar graphs
have weights of virtually 0. These features essentially have
no effect on the predictive power of the model and thus
the L1 Regularization implicitly performs dimensionality
reduction.

The L2 Regularized Logistic Regression Model was also
run for each multinomial class label. Since L2 regular-
ization with a Newton-CG Augmented Lagrangian Method
Solver introduces a bias factor to minimize the sum of the
squared residuals, it alleviates multicollinearity amongst
predictor variables in a model. The R2 value of the L2
regularized model was 0.77, meaning that 77% of the varia-
tion in Class can be explained by the variation in the model.
Again, although the most important features cannot be ex-
tracted from the model, by alleviating multicollinearity, we
have weights for each feature that can more accurately fit
new data.
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Figure 11. Because of the L2 Regularizer, it is unclear
whether or not a feature is necessary to be included in the
model. However, it can be seen that some features are
highly correlated with others and thus have a higher weight
to help account for this multicollinearity and eliminate its
redundant effect in the model.

For Principal Component Analysis, the PCA model was
able to map the 16-dimensional data into just 4 dimensions,
although the data is not distinguishable between the differ-
ent class labels (Fig. 12). The PCA model from the SciKit
Learn API didn’t return an R2 value, but rather the average
log-likelihood of all samples. The average log-likelihood
of our dataset was -40.74. By examining the Eigenvectors
and Eigenvalues, PCA found StudentAbsenceDays, Vis-
ITedResources, GradeID, and Semester to be the features
with the most predictive power.

Figure 12. PCA linearly transformed 16-dimensional data
into 4 dimensions, but could not distinctly separate each
class label.

For Linear Discriminant Analysis, although the model was
not able to linearly transform the data to distinguish be-
tween different class labels (Fig. 13), the model had a
0.729 R2 value. The LDA model explains almost 73% of
the variability in the response variable Class. By examin-
ing the Eigenvectors and Eigenvalues, LDA found that gen-
der, Semester, SectionID, and StudentAbsenceDays were
the features with the most predictive power.

Figure 13. LDA linearly transformed 16-dimensional data
into 4 dimensions, but also could not distinctly separate
each class label.

4.3. Discussion

Based on the R2 values of all the models except for PCA
(which has a log likelihood value that is not comparable
to R2), the Bayesian network (81.64%) and the L2 regu-
larized logistic regression (77%) had the most predictive
power that allowed them to identify feature importance.
While Haury et al. did not evaluate Bayesian networks,
they found that Lasso regression (L1 logistic regression)
was one of the highest accuracy models for feature selec-
tion. Although we did not evaluate accuracy of feature
selection using precision and recall as did Haury et al.,
Lasso regression having a high accuracy does correlate to
satisfactory model fitting to the data and predictive power,
which does not match our result for L1 (we identified L1
with the lowest R2 value .5 The following models round
out the ranking ofR2 values: SVM (74% for high, 82% for
medium, and 56% for low), LDA (73%), and L1 logistic
regression (61%). We can analyze model fit and predictive
power in order to identify important features based on
R2 values because the higher the value, the more likely
the variation in the class label can be explained by the
variation in the model.

We hypothesized that the Bayesian network and L1
logistic regression would be the best fitting/most predictive
feature selection methods, which was only confirmed
for the Bayesian network by the R2 evaluation method
above. However, we believed that LDA would be the least
predictive/unable to identify important features, when L1
logistic regression ended up having the smallest R2 value,
most likely due to overfitting. Moreover, we predicted that
SVM would neither be the most or least accurate at fitting
the data, which was shown through our R2 analysis as
well. Although SVM was run three separate times for each
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1-vs-all class label and the other models performed feature
selection once on the entire dataset, the average R2 value
(71%) is still higher than that of L1 logistic regression,
meaning that SVM was a better fit model for the data.

Analysis can also be performed on what important features
were chosen between Bayesian networks, PCA, and LDA.
The Bayesian network achieved the highest r-values (rank-
ing values) for the first four important features when using
information gain to learn the edges, and as such, we will
use these features as the official results for the Bayesian
network. VisitedResources, StudentAbsenceDays, Raised-
Hands, AnnouncementsView were the highest ranking
features according to the Bayesian network. PCA found
that StudentAbsenceDays, VisitedResources, GradeID and
Semester were among the top features in the dataset. LDA
predicted Gender, Semester, SectionID, and StudentAb-
senceDays for the important features. While there are
differences between the features selected, we can say that
StudentAbsenceDays has a large impact on whether a stu-
dent is a low, medium, or high level student because each
method selects that feature. The above analysis cannot be
done with SVM because the model was run three times for
each class label, and thus, the features predicted are based
on each class label, not the dataset as a whole. L1 and L2
logistic regression does not allow feature extraction from
the model as it performs dimensionality reduction, but can
identify which features were essentially removed from the
model because they were not important to the predictive
power of the model.

Despite the fact the SVM performs feature importance al-
gorithms and L1/L2 logistic regression performs dimen-
sionality reduction, we can compare the least important
features from SVM and from L1/L2 logistic regression. For
the ”low” label, it was found that Discussion, Topic, Visit-
edResources, and RaisedHands had the lowest weights and
were therefore least important in determining the ”low” la-
bel for SVM. L1 has coefficients of virtually zero (mean-
ing they are not important features for the model) for An-
nouncementsView, Discussion, and Relation. L2 has co-
efficients of around zero for Discussion and Announce-
mentsView. From this, we can infer that Discussion is not
an important feature for any of the models and must not be
important to the predictive power of the model. Similarly,
for the ”medium” label, RaisedHands, Discussion, An-
nouncementView, and ParentSchoolSatisfaction were low
weights for SVM. L1 logistic regression also included
RaisedHands, AnnouncementView, and ParentSchoolSat-
isfaction as unimportant features, while L2 listed only Dis-
cussion and VisitedResources as unimportant. Lastly, the
”high” label had similarities across the three models of An-
nouncementView and Discussion being unimportant labels

for determining the ”high” label for a given student.

5. Conclusion
Feature importance and dimensionality reduction are
necessary preprocessing/algorithmic techniques for large
datasets that suffer from the curse of dimensionality. By
projecting a dataset onto a lower dimensional space or
by removing the irrelevant features from a dataset, the
interpretability and simplicity of the dataset increases.
Additionally, it is easier to identify the predictive power of
the dataset without noise and redundancy. We found that
L2 regularized logistic regression and Bayesian networks
best fit the data, resulting in more predictive power that
allowed them to identify important features. L1 logistic
regression had the smallest R2 value, meaning it did not
fit the data as well and as such, did not have as much
predictive power. This is probably due to the fact that it
cannot implicitly perform feature selection.

Future experiments should evaluate feature importance
with a wider-breadth of algorithms, such as with ensemble
models (i.e. Random Forest) and on more than one dataset
to account for variance in noise, feature dependencies, re-
dundancy, etc. Additionally, using datasets with more fea-
tures may help to better visualize the results of dimension-
ality reduction and feature selection techniques. Similarly,
choosing all feature selection or all dimensionality reduc-
tion models may be helpful to better be able to compare the
results of the experiments, whether it be by comparing the
important features or the removed features.
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